EMPOWERING URBAN SUSTAINABILITY:

BIPV and **Delivering** Solar at Scale

> Presented by: Danial Hadizadeh, Mitrex CEO

TODAY'S AGENDA

1. Introduction to BIPV & local Law 97

2. Delivering Resource-efficient Decarbonization For Buildings

3. Delivering At Solar Scale

4. Decarbonization: Commercial Drivers & Challenges

5. About Mitrex & Cladify

6. Incorporating Innovations & Materials For Decarbonization

7. Financing Net-zero & Disruptive The Leasing Cycle

8. Why Is This A Good Alternative Material

9. Mitrex R-value & Solar Energy Generation In Different Locations

10. Case Studies

11. Conclusion

12. Q&A Session

INTRODUCTION TO BIPV & LOCAL LAW 97

The integration of solar technology within building design and retrofitting processes is not just a solution, but a necessity in our journey towards a sustainable future. Local Law 97 mandates stringent carbon emissions reductions for buildings.

DELIVERING RESOURCE-EFFICIENT DE-CARBONIZATION FOR BUILDINGS

BIPV has the power to revolutionize our approach to decarbonization.

By seamlessly integrating solar panels into building materials, we can generate clean energy while minimizing our carbon footprint. Let's uncover how BIPV aligns with the goals of Local Law 97 and maximizes resource efficiency.

DELIVERING SOLAR AT SCALE

THE NECESSITY OF SCALING SOLAR:

The urgency of addressing climate change and reducing carbon emissions.
The role of renewable energy, particularly solar, in achieving sustainability goals.

THE SCALABILITY POTENTIAL OF BIPV:

- BIPV enables large scale solar adoption by utilizing building surfaces.
- Case studies of successful large scale BIPV installations.

IMPACT ON URBAN ENERGY LANDSCAPES:

- Widespread adoption of BIPV can transform urban energy landscapes.
- The potential reduction in grid dependency and enhancement of energy self-sufficiency.

CHALLENGES AND OPPORTUNITIES:

- Technical and regulatory challenges associated with scaling BIPV.

- Opportunities for innovation and collaboration to overcome these challenges.

DECARBONIZING: COMMERCIAL DRIVERS & CHALLENGES

DRIVERS

CORPORATE IMAGE: Enhancing corporate image by demonstrating commitment to sustainability and innovation.

REGULATORY INCENTIVES: Government incentives, subsidies, and regulations that encourage or mandate the use of renewable energy sources.

ENVIRONMENTAL COMMITMENT: Businesses are increasingly recognizing the importance of reducing their carbon footprint and contributing to global sustainability goals.

CHALLENGES

TECHNICAL CHALLENGES: Design and installation.

REGULATORY CHALLENGES: Compliance with building codes, regulations, and obtaining necessary permits.

ECONOMIC CHALLENGES: High upfront costs, return on investment concerns, and availability of financing options.

KNOWLEDGE AND SKILL CHALLENGES: Lack of knowledge and skilled workforce for design, installation, and maintenance of BIPV systems.

OVERCOMING THE CHALLENGES

COLLABORATIVE APPROACH: Collaborating with architects, engineers, & BIPV manufacturers from the design phase to ensure seamless integration.

GOVERNMENT SUPPORT: Advocating for more government incentives and subsidies to reduce the economic burden.

PUBLIC-PRIVATE PARTNERSHIPS: Encouraging public-private partnerships to facilitate knowledge sharing, innovation, and financing.

TRAINING AND EDUCATION: Investing in training and education to build a skilled workforce for BIPV implementation and maintenance.

WHO WE ARE

The World's Largest Sustainable Facade Manufacturer 20 Years in Construction Industry

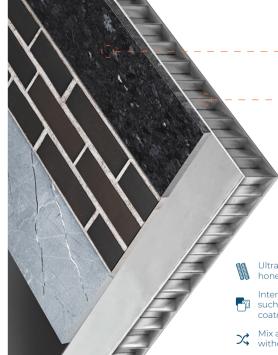
UĽ

IEC

 R /

SP

A Proudly North American Company


Cladif

WHAT DO WE MANUFACTURE?

INCORPORATING INNOVATIONS & MATERIALS FOR DECARBONIZATION

NON-ACTIVE PANEL

Customizable Facing

Ultra Lightweight Advanced Backing Technology

🕈 Solar Cell

Ultra lightweight aluminum honeycomb core technology.

Interchangeable, multi-facing materials such as stone, porcelain, glass, brick, or coated aluminum surfaces.

X Mix and match different facings without altering the installation.

Sustainable, energy generating facades at no extra cost.

Energy-efficient solution for both existing and new facades.

Endless surface design options.

ACTIVE PANEL

FINANCING NET ZERO & DISRUPTING THE LEASING CYCLE

THE NEED FOR FINANCIAL SUPPORT:

- The cost associated with the transition to net-zero buildings, including the implementation of BIPV systems.

- The need for financial support to overcome economic barriers and facilitate the transition.

INNOVATIVE FINANCING MODELS

- Green Bonds: Bonds issued to finance environmentally friendly projects.

- Power Purchase Agreements (P Pas): Long-term agreements to purchase electricity generated by the BIPV system at a fixed or predictable rate.

- Energy Service Companies (ESCOs): Companies that finance, design, install, and maintain energy-saving projects, and are paid from the savings generated.

DISRUPTING THE TRADITIONAL LEASING CYCLE:

- The role of the leasing cycle in the decarbonization process.
- Incorporating BIPV systems and energy efficiency measures into the leasing cycle can accelerate the decarbonization process.
- Benefits of disrupting the traditional leasing cycle, such as reduced energy costs, enhanced building value, and attracting environmentally conscious tenants.

WHY IS THIS A GOOD ALTERNATIVE MATERIAL

ANY APPLICATION: Suitable for retrofit and new build project.

EASY TO INTEGRATE: Versatile systems that meet any project needs.

ITC TAX INCENTIVES:

Building owners can capitalize on a tax credit up to 30% for the solar building envelope.

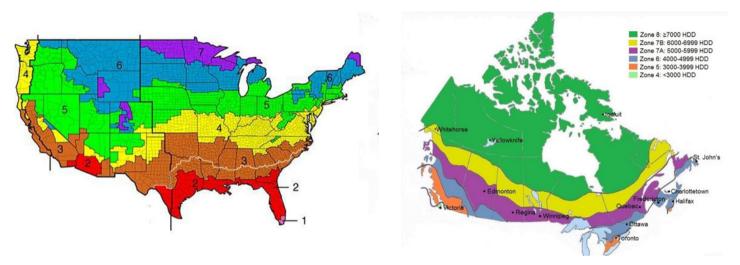
NO ADDITIONAL COST:

Product replaces traditional building envelope material.

HIGH ROI:

Tax incentives and free energy generation mean that the building pays for itself.

GREEN ENERGY GENERATION


Create a more sustainable future for all.

MITREX R-VALUE & SOLAR ENERGY GENERATION IN DIFFERENT LOCATIONS

NEW YORK		BIPV COMPENSATION FACTOR (EQUIVALENT) 400W					
R-Value	Winter Heating Loss (kWh)	Summer Cooling Loss (kWh)	Net Energy Loss (kWh)	South	West	East	North
1	31.03	9.18	40.21	102%	79%	82%	38%
10	3.10	0.92	4.02	1023%	791%	817%	380%
20	1.55	0.46	2.01	2047%	1583%	1633%	760%
30	1.03	0.31	1.34	3070%	2374%	2450%	1140%
40	0.78	0.23	1.01	4094%	3165%	3267%	1520%
50	0.62	0.18	0.80	5117%	3956%	4083%	1900%

TORONTO		BIPV COMPENSATION FACTOR (EQUIVALENT) 400W					
R-Value	Winter Heating Loss (kWh)	Summer Cooling Loss (kWh)	Net Energy Loss (kWh)	South	West	East	North
1	46.50	5.50	52.04	27%	22%	22%	11%
10	4.65	0.55	5.20	273%	223%	221%	109%
20	2.33	0.27	2.60	546%	446%	443%	218%
30	1.55	0.18	1.73	819%	669%	664%	327%
40	1.16	0.14	1.30	1093%	893%	885%	436%
50	0.93	0.11	1.04	1366%	1116%	1107%	545%

CLIMATE VARIATIONS & INSULATION BY LOCATION

1. For Canadian cities, such as Toronto: https://www.homedepot.ca/en/home/ideas-how-to/home-repair-and-maintenance/how-to-choose-insulation.html 2. For cities in the United States: https://codes.iccsafe.org/content/FEC2017/chapter-4-re-residential-energy-efficiency

CITY	CLIMATE ZONE	INSULATION REQUIREMENTS
New York	4	20
Toronto	5	22
Los Angeles	3	20
Houston	2	13
Miami	2	13

When it comes to windows, a typical double-glazed window has an R-Value of 3.7, while a triple-glazed window has an R-Value of 4.3. With

CLIMATE VARIATIONS & INSULATION BY LOCATION

The compensation factor considers a smaller amount of BIPV as the window size increases. Please note that these calculations do not account for solar heat gain through a window.

СІТҮ		BIPV COMPENSATION FACTOR						
	Window Glazing	0.2	0.3	0.4	0.5	0.6	0.7	0.8
New York	Double Pane	870.5%	617.2%	444.6%	319.6%	224.7%	150.4%	90.5%
	Triple Pane	946.4%	683.8%	499.1%	362.2%	256.6%	172.7%	104.4%
Toronto	Double Pane	241.7%	169.4%	121.1%	86.5%	60.6%	40.4%	24.2%
	Triple Pane	263.7%	188.2%	136.2%	98.3%	69.3%	46.4%	28.0%
Los Angeles	Double Pane	2220.7%	1574.5%	1134.3%	815.3%	573.3%	383.6%	230.8%
	Triple Pane	2414.5%	1744.5%	1273.4%	924.1%	654.7%	440.4%	266.4%
Houston	Double Pane	944.9%	708.3%	531.0%	393.2%	283.0%	193.0%	117.9%
	Triple Pane	10.0.8%	773.1%	588.6%	441.1%	320.7%	220.4%	135.6%
Miami	Double Pane	680.2%	509.9%	382.3%	283.1%	203.8%	138.9%	84.9%
	Triple Pane	727.7%	556.6%	423.7%	317.6%	230.8%	158.6%	97.6%

IMPLICATIONS FOR SUSTAINABLE DESIGN

BIPV, we can gain valuable insights into the overall energy dynamics.

The energy loss of a building can be significantly offset by the energy generation capabilities of BIPV systems.

BIPV can potentially offset the building's energy loss by up to a factor of 130X depending on the city.

The ability of BIPV systems to counterbalance energy loss in a building is of great importance in sustainable design.

By integrating BIPV into the building envelope, we can effectively reduce the reliance on external energy sources and minimize the overall environmental impact.

The integration of BIPV systems can contribute to the reduction of greenhouse gas emissions and foster a more sustainable and resilient built environment.

CASE STUDY Saint Mary's University Retrofit

Halifax, NS, Canada

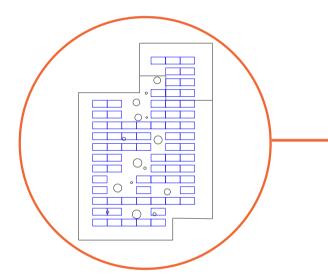
Presented by: Danial Hadizadeh, Mitrex CEO

CLIENT GOALS

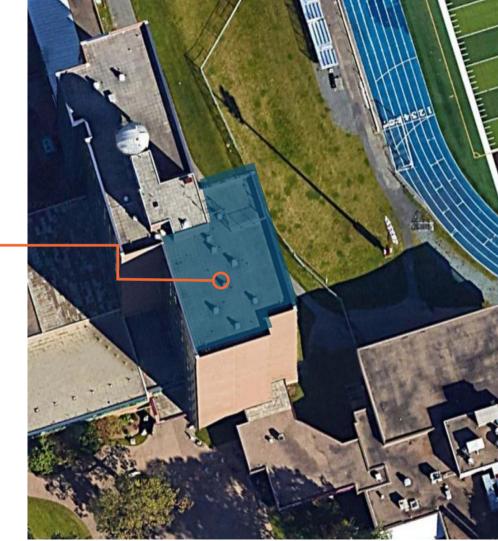
ST MARY'S UNIVERSITY

Owner

DSRA ARCHITECTURE
Architect


DellisDon

ELLISDON
Developer/Builder


GOAL: Develop a sustainable solution for St Mary's students housing project.

- · Create a high performance building envelope that generates electricity.
- Retrofit existing structure with aesthetic facade.
- Code compliant.

SYSTEM SIZE: **28 kW** ESTIMATED ENERGY GENERATION: **32.3 MWh/y** TYPE OF MODULE: **Standard 390W Solar Panels**

🔥 MITREX 🗌 📞 Cladify:

IDEA #2 Solar Panels on the Ground

SYSTEM SIZE: **54.6 kW** ESTIMATED ENERGY GENERATION: **67.3 MWh/y** TYPE OF MODULE: **Standard 390W Solar Panels**

MITR ≡ X° | 📞 Cladify:

INSTALLATION SYSTEM ANALYSIS

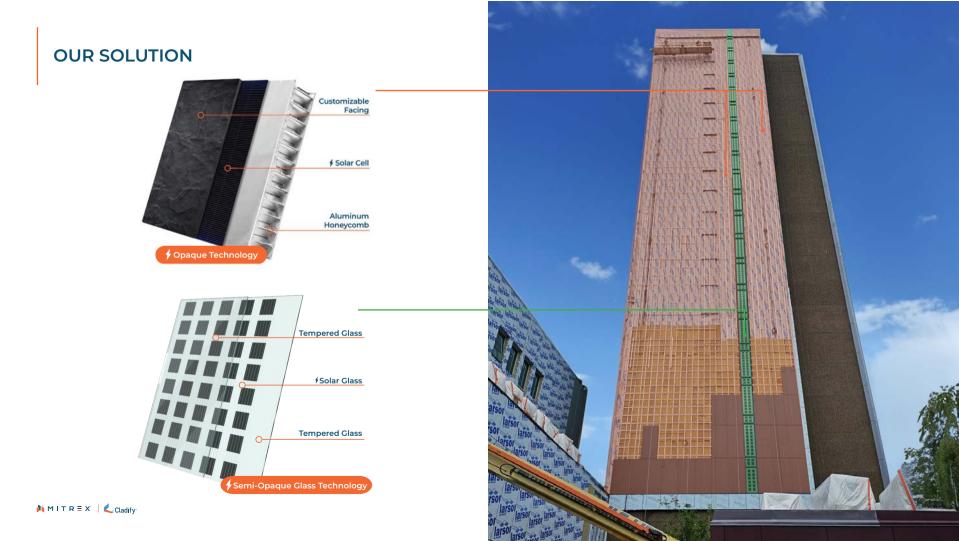
CLADISHIELD SYSTEM

Rainscreen System

CLADICAST SYSTEM

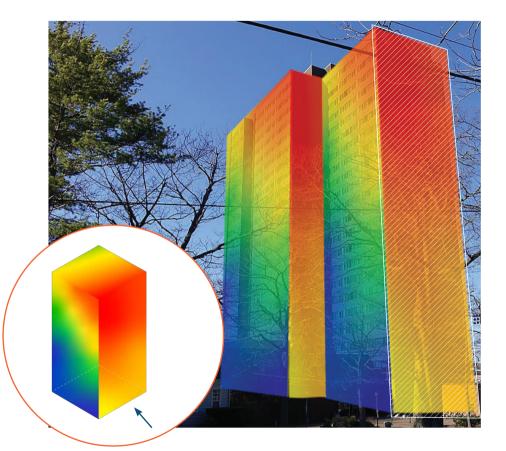
Precast Wall System

CLADIFAB SYSTEM Prefab Wall System

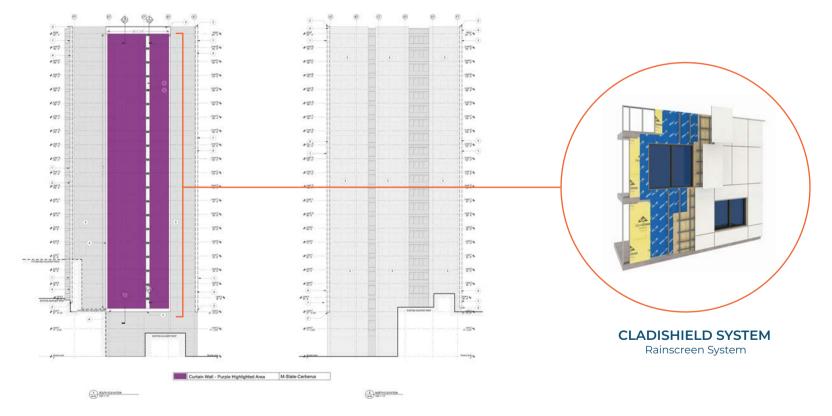


MITR ≡ X° | 📞 Cladify:

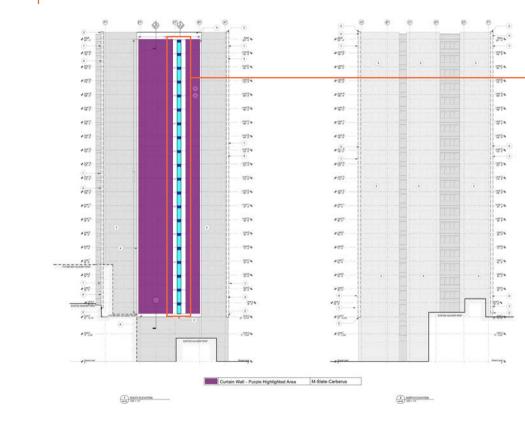
PROJECT CHALLENGES

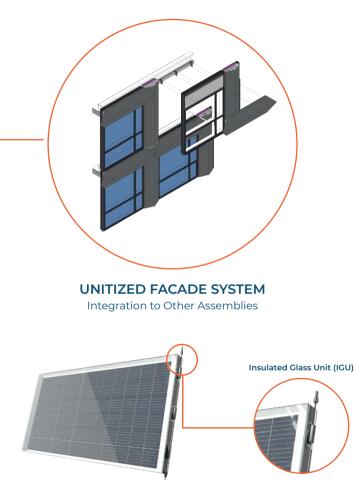

- Retrofit of existing building.
- For ground mounted solar 7,168 SQFT of land is required.
- Meeting architects vision for design and aesthetics of the facade.
- Maximizing energy generation based on colour and shading.
- Utilizing an installation system that is ideal for the retrofit project.
- Providing a cost effective solution.
- Ensuring testing and certifications are met (wind load, fire test, etc).

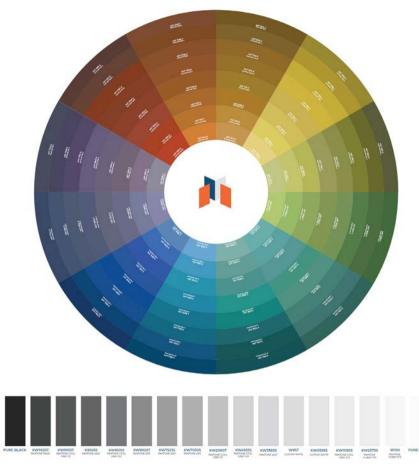
SHADING ANALYSIS

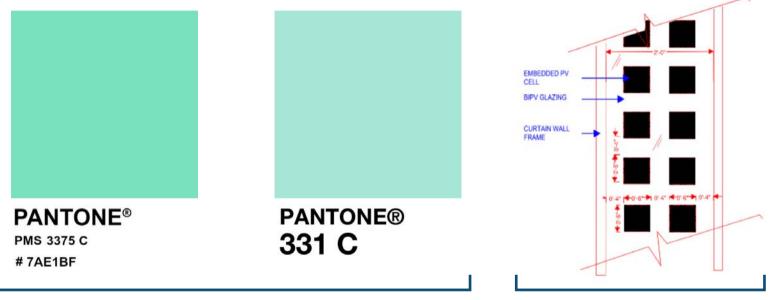


South elevation of building produces the highest amount of energy.

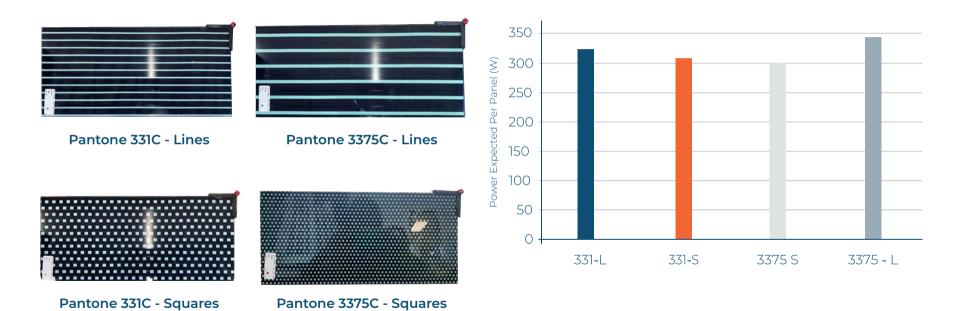

South Elevation OPTIMAL POWER

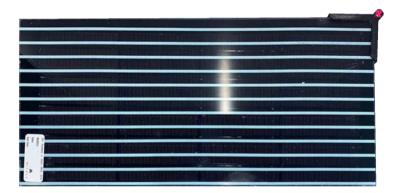

🔥 MITREX | 📞 Cladify:


SOLUTION + SYSTEM Solar Integrated IGU & Spandrel



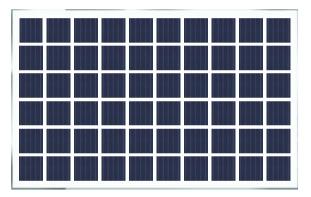
SIZE & COLOUR CAPABILITIES


MATCHING THE ARCHITECTS VISION


Cladding Colour

Glass Cell Arrangement

DESIGN OPTIMIZATION



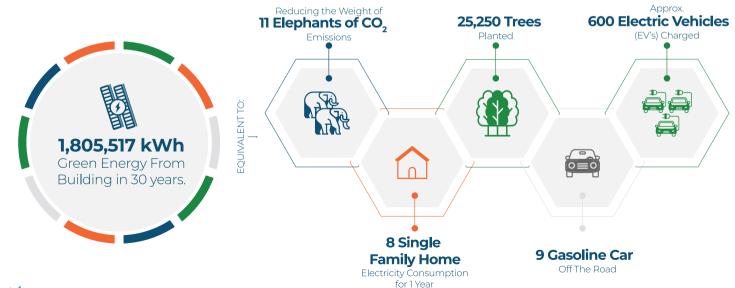
ARCHITECT FINAL DECISION

Pantone 331C - Lines

This option provides optimal power outcome while matching the architects aesthetic view

Semi-Opaque

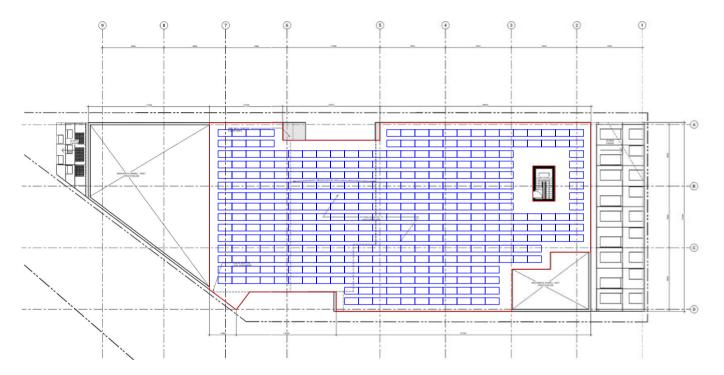
Allows for visibility and energy generation


MITREX | Cladify

ALP AND

ENVIRONMENTAL IMPACT

🔥 M I T R E X' | 📞 Cladify'


CASE STUDY University **Building** -**New Build**

PROJECT CHALLENGES

- Align this new building construction with the university green and sustainable goals.
- Offset part of the energy demand consumption of the building.
- Meeting architects vision for design and aesthetics of the building facade.
- Providing a cost effective solution.
- Ensuring testing and certifications are met (wind load, fire test, etc).

IDEA #1 Solar Panels on the Roof

SYSTEM SIZE: **138kW** ESTIMATED ENERGY GENERATION: **156,866 MWh/y** TYPE OF MODULE: **Standard 390W Solar Panels**

🔥 M I T R 🗏 X' | 💪 Cladify'

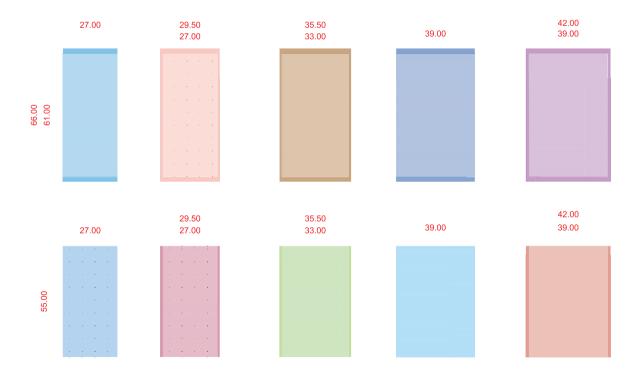
IDEA #2 Solar Integrated Cladding

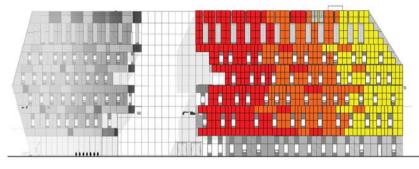
Snowfall

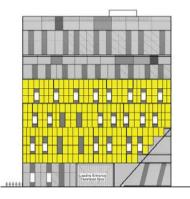
Rocksalt

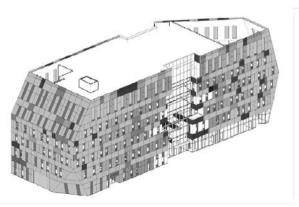
SYSTEM SIZE: **509.6 kW** ESTIMATED ENERGY GENERATION: **313,708.7 MWh/y** TYPE OF MODULE: **Solar Facade Panels**

IDEA #2 Solar Integrated Cladding

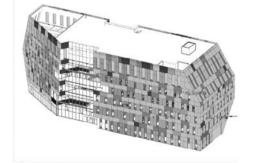

	OTHER	MIT	REX		
ELEVATION	ACM / METAL / ALU PLATE	NON-ACTIVE CLADISHIELD	ACTIVE CLADISHIELD	SYSTEM SIZE	ESTIMATED ENERGY GENERATION
NORTH	22,523 SQFT	7,141 SQFT	15,382 SQFT	200.0 kW	85,984.8 kWh
SOUTH	18,373 SQFT	8,730 SQFT	9,642 SQFT	125.4 kW	100,280.1 kWh
SOUTH-WEST	8,526 SQFT	2,292 SQFT	6,233 SQFT	81.0 kW	58,344.7 kWh
EAST	10,494 SQFT	3,857 SQFT	6,637 SQFT	86.3 kW	57,804.1 kWh
WEST	2,834 SQFT	1,538 SQFT	1,297 SQFT	16.9 kW	11,295.0 kWh
TOTAL	62,750 SQFT	23,559 SQFT	39,191 SQFT	509.6 kW	313,708.7 kWh


Calculations based on EllisDon quantities of approximately 44,767 ft2 of possible PV wall panel. Pricing is based on a full turnkey solution that includes supply and installation of panels, mounting systems and all electrical components including inverters, transformers, monitoring system etc.

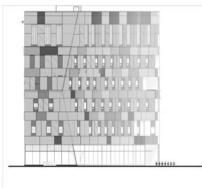


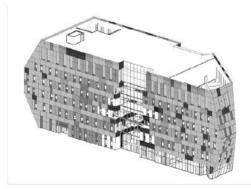

IDEA #3 Solar Integrated Cladding


East Elevation

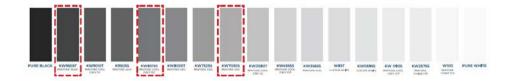


Nord East corner Elevation

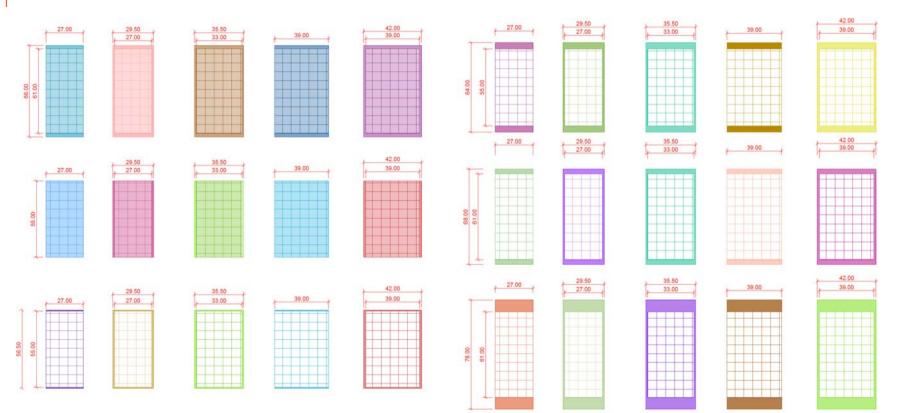

South Elevation

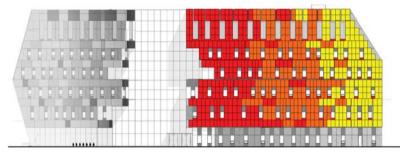


North Elevation

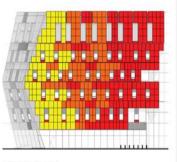

Northeast Elevation

 KW9505T
 KW85155
 KW70305

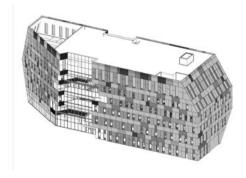

 EMMIONE TSROC
 EMMIONE COOL
 EMMIONE COOL


	MITREX			
	Active - Rainscreen (Sqft)	System Size (kW)	BIPV kWh	
North	15240	224	70,344	
South	9828	144	113,416	
Southwest	6458	95	74,524	
West	1279	19	11,943	
East	7133	105	67,216	
Roof	306 Panels	119	129,000	

Total	46569	587	466,443
			BIPV

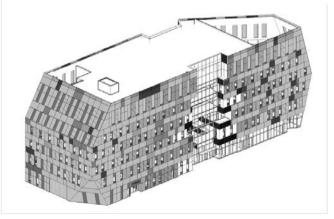


IDEA #4 Solar Integrated Cladding

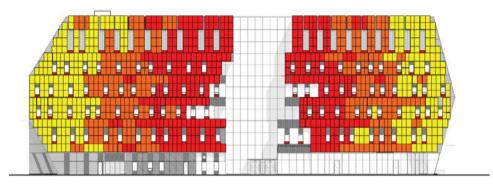




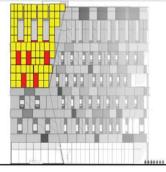
South Elevation

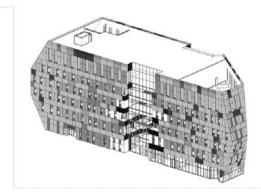


Southwest Elevation



East Elevation



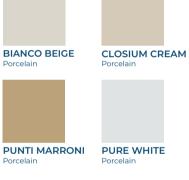


Nord East corner Elevation



Northeast Elevation

	MITREX			
	Active - Rainscreen (Sqft)	System Size (kW)	BIPV kWh	
North	14529	209	65,696	
South	9404	135	106,300	
Southwest	6172	89	69,773	
West	1279	18	11,699	
East	6955	100	64,193	
Roof	306 Panels	119	129,000	


Total	44970	552	446,662
			BIPV

DESIGN APPROACHES

AQUABELLA

DEVELOPER: **Tridel, Hines** ARCHITECT: **3XN, Kirkor Architects & Planners** BUILDING TYPE: **Condo, Retail**

MIDLAND COURTHOUSE

Solar Wood

CUSTOM COLOUR

Solar Solid Colour

PROJECT SIZE: 10,000 SQFT POWER OUTCOME: 280kW BUILDING TYPE: Government

DESIGN APPROACHES

THE SEE INSTITUTE, DUBAI

CUSTOM DESIGN POLARIS Solar Metal Solar Solid Colour

PROJECT SIZE: **1,500 SQFT** POWER OUTCOME: **20kW** BUILDING TYPE: Institutional

INDUSTRIAL WALL

PROJECT SIZE: 10,000 SQFT POWER OUTCOME: 110 kW System BUILDING TYPE: Industrial

CONCLUSION

- The importance of scaling up solar adoption and the role of $\ensuremath{\mathsf{BIPV}}$ in this process.

- The commercial drivers and challenges associated with BIPV adoption.

- The innovative materials and technologies propelling BIPV forward.

- The financial models and strategies to facilitate the transition to net-zero buildings.

THE WAY FORWARD:

- Continued innovation and collaboration among stakeholders, including architects, engineers, property owners, and policymakers.

- Leveraging opportunities presented by legislation, such as Local Law 97 in New York, which mandates a reduction in carbon emissions for buildings.

- $\ensuremath{\mathsf{Promoting}}$ public awareness and education on the benefits of $\ensuremath{\mathsf{BIPV}}$ and net-zero buildings.

Floating

Airport

Solar Farm

Stadium

Q&A SESSION

Warehouse

Hospita

THANK YOU FOR YOUR ATTENTION.

Let's work together to shape our cities into models of sustainability and resilience. The journey towards a greener and brighter future begins with each one of us taking proactive steps to embrace innovative solutions like BIPV and drive sustainable development. Together, we can make a difference.

Noise Barrier

reenhouse

Parking Lot

Greenhouse

Learn More :

mitrex.com
 cladify.com
 info@mitrex.com
 info@cladify.com

↔+1 (855) 254 0214 (Toll Free)

Headquarters:

41 Racine Rd., Toronto, ON M9W 2Z4, Canada

+1 (416) 497 7120

West USA Office:

10880 Wilshire Blvd Suite 1101, Los Angeles, CA 90024, USA

& +1 (323) 301 7978

East USA Office:

1 Rockefeller Plaza Fl 11, New York, NY 10020, USA

& +1 (646) 583 4486